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A study has been made of the boundary-value problem in the region D(0 < 2; < 4, 0 < 23 a):
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Equations (1), (2) describe the unsteady motion of ground water from-a free surface in a layer of finite depth over
a horizontal impermeable base without infiltration or evaporation from the free surface being taken into account; k and
m in (1) are used to denote the coefficients of percolation and water loss of the soil, & (zy, 3, t) is the ground water
head at point x;, X at time t. Two implicit difference schemes were stud-

hm ied for this problem, which has a slight nonlinearity.
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Fig. 1 (< h > is some mean value of the head).

As boundary conditions we use the values of the boundary functions at the points of intersection of straight lines
parallel to the 0x;-axis and the boundary of the region of integration; as initial values we use the values obtained in the
computations for the preceding layer. The second variable Xj (J # 1) enters the equation as a parameter. The solution
of the finite-difference analog of Eq. (8) is denoted z = z(x; Xy 1); in this case
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The local one-dimensional, three-point, second-order difference scheme [1] for Eq. (3) has the form
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Here Aj is an operator approximating the initial differential operator
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and hj is the space variable interval.

The second scheme was developed on the basis of the method proposed in [2] for the heat conduction equation.
Equation (1) is reduced to the form
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In scheme 2, in addition to the values of the approximating function z, in the j-th and (j + 1)-th layers with re-
spect to time, in accordance with [2], we introduce some intermediate solution Z;;, ;4 of the problem (which corre-
sponds to the introduction of an intermediate layer j + ’;Q into scheme 1). Equation (5) is replaced by the following sys-
tem of finite-difference relations:
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The convergence and the stability of the corresponding linear system was demonstrated in [2]. The stability of
the nonlinear system (8) was checked experimentally.
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The behavior of schemes 1 and 2 was studied for a linearized Eq. (1) of the form
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for which an exact solution is known [3], with the initial and boundary conditions stipulated in [4], where the problem
(7). (2), is solved as an example, using an explicit difference scheme, fork=5 m/day, m= 0.06, <h> = Hp= 30 m,
Hy=40m, r=100days, h; = hy= 1000 m, ¢ = 10 000 m. The exact solution of (7), (2) is expressed by the formula
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Here ¢ is the probability integral. This formula and (4) and (6) were used in making computations with the
_above-mentioned initial and boundary conditions. Figure 1 shows diagonal sections of the tables of ground water levels
at the time t = 700 days. For comparison we show computations ’
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conditions (2) were solved by iterations of the following form. As W00 00 440 440 447 487 4407 A7 47 444
the initial approximation in the coefficients we selected values of Fig. 2

the function from the preceding layer and used the pivot method

to compute the first approximation of the required function. This value was likewise entered into the coefficients and
the second iteration was computed, and so forth, until the stipulated accuracy was attained.

Figure 2 shows lines representing the surface levels of the ground water, computed using schemes 1 and 2 (contin-
uous and broken lines, respectively); the levels at the individual nodes of the grid are also noted (the values in paren-
theses corresponds to scheme 2).

The discrepancies in the values given by the two schemes are small and decrease with time. This suggests the use
of scheme 2, which in the solution of (7), (2) involved fewer computations.
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